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Abstract

In this investigation a characteristic analysis of stress wave propagation in anisotropic fluid-saturated
porous media is performed based on generalized characteristic theory. This method enables us to carry out
a complete basic analysis of wave propagation characteristic in fluid-saturated porous media, and
immediately determine the wave fronts through the normal velocity surfaces. First, the characteristic
differential equations and compatibility relations along bicharacteristics are deduced. Then the analytical
expressions for the normal velocity surfaces and wave fronts are presented. Based on these equations, the
characteristic of the normal velocity surfaces and the wave fronts for all components of the stress waves in
an orthotropic fluid-saturated porous media as well as its special cases in three-dimensional space is
computed and discussed. The results show that the wave fronts of fast and slow waves remain regular along
with the increase of anisotropy of the media, but great anisotropy may lead to more than one triple angle on
the wave fronts of quasi-transverse or transverse waves.
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1. Introduction

The propagation of stress waves in anisotropic fluid-saturated porous media has important
applications in many practical fields, such as geophysical exploration, earthquake engineering,
rock dynamics, etc., owing to which it has attracted more and more attention in recent years. In
1956, Biot formulated the basic equations for the wave propagation in anisotropic porous media
[1–4]. Based on his work, many researchers have studied the propagation characteristic of stress
waves in fluid-saturated porous media using different methods. Plona [5] experimentally studied
the slow wave predicted by Biot, and provided an experimental proof for Biot’s theory. Auriault
et al. [6] and Johnson [7] studied dynamic permeability. Tajuddin and Ahmed [8] calculated the
dispersion curves for layered isotropic porous media. Schmitt [9] derived the characteristic
equations for plane waves in transversely isotropic fluid-saturated porous media through
homogenization theory and numerically discussed the dispersion and attenuation of different
waves. Sharma and Gogna [10] also obtained the characteristic equations in rectangular
coordinates and analyzed the characteristic of Rayleigh waves. Liu et al. [11–13] discussed the
influence of anisotropy of solid skeleton and fluid viscosity on the propagation of stress waves.
Carcione et al. [14] studied the velocity surface for a bone as an anisotropic fluid-saturated porous
medium. It can be seen that the study for the wave characteristic in isotropic fluid-saturated
porous media has approached the perfect characteristic. However, the theoretical analysis and
numerical calculation of stress waves in anisotropic fluid-saturated porous media have not been
carried out systematically, partly owing to the complexity of the media, and on the other hand, the
scarcity of effective methods. Moreover, some basic characteristic of waves in anisotropic fluid-
saturated porous media, such as the characteristic of velocity surfaces (or slowness surfaces) and
wave fronts, plays a central role in the interpretation of a wide range of wave phenomena in
anisotropic materials. Although some works have been carried out on the characteristic of
velocity surfaces (or slowness surfaces) [14], to the author’s knowledge, little attention has been
paid to the research about the properties of the wave fronts. By now, how to accurately determine
the wave fronts remains a key point for the characteristic analysis of stress wave propagation in
anisotropic fluid-saturated porous media. Presently, we have had many methods to obtain the
wave fronts, such as by drawing the enveloping surfaces after the slowness surfaces are determined
[15], or through determining energy velocity surfaces by adopting plane-wave theory and
introducing Umov–Poynting vector, which has been discussed in ref. [16]. However, for fluid-
saturated porous media, the existence of the fluid phase will make the characteristic of velocity
surfaces (or slowness surfaces) and wave fronts more complicated. It is necessary to find an
explicit and simple method to discuss the basic characteristic of waves in anisotropic fluid-
saturated porous media. The generalized characteristic theory and the method of characteristics
are effective tools for the theoretical analysis and numerical calculation on the stress wave
propagation problems. Different from the plane-wave theory, which should assume certain
solution forms first, such as u ¼ u0 exp i ðkx � otÞ; the characteristic analysis solves the partial
differential equations directly. As a result, in the plane-wave theory, the energy velocity (or the
wave front) should be obtained in terms of Umov–Poynting vector and energy densities; while in
characteristic analysis, the wave fronts could be immediately determined by the normal velocity
surfaces and differential equations along bicharacteristics. Due to their extrusive advantage of
explicit physical meaning, no discrete dispersion, high calculation efficiency and precision, the
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characteristic analysis has been successfully and widely applied in the analysis for the propagation
characteristic of stress waves in anisotropic solids [17]. However, little attention has been paid so
far to the application of generalized characteristic theory in the analysis of stress wave
propagation in anisotropic fluid-saturated porous media.
In this paper, a characteristic analysis for stress wave propagation in anisotropic fluid-saturated

porous media is performed. The governing equations for anisotropic fluid-saturated porous media
are obtained based on Biot’s theory (Section 2). The characteristic differential equations and
compatibility relations along bicharacteristics for anisotropic fluid-saturated porous media are
deduced by using generalized characteristic theory (Section 3). The general analytical expressions
for wave fronts and velocity surface are formulated. Moreover, three-dimensional velocity
surfaces and wave fronts for all the components of the stress wave are completed with the help of
our efforts on graphical interfaces and viewdata (Section 4). As a result, the features of stress wave
propagation in orthotropic fluid-saturated porous media and its special cases, such as transversely
isotropic fluid-saturated porous media and isotropic fluid-saturated porous media, are explored in
detail (Section 5) and the conclusion is given.
2. Basic equations

2.1. Biot theory

For fluid-saturated porous medium, the equations of motion and the constitutive relation in
Lagrange coordinate system may be expressed as [3]

sij;j ¼ r1v
s
i;t þ r2v

f
i;t;

�p;i ¼ rf vs
i;t þ fmik ðv

f
k;t � vs

k;tÞ þ frik ðv
f
k � vs

kÞ; ð1aÞ

sij;t ¼ Aijkl vs
k;l þ fMijðv

s
k;k � v

f
k;kÞ;

p;t ¼ Mklv
s
k;l þ fM ðvs

k;k � v
f
k;kÞ; ð1bÞ

where sij are the stress components of solid skeleton, p the fluid pressure, rz the density of z phase,
in which z ¼ s; f ; corresponding to the solid skeleton and pore fluid, respectively, r ¼ r1 þ r2 ¼
ð1� fÞrs þ frf denotes the solid–fluid mixture density, f the porosity, and vai the velocity
components of z phase in the direction i. Repeated indices imply summation and the comma
stands for partial derivative with respect to the space variable xi or the time t. Aijkl, Mij and M are
elastic parameters for anisotropic solid skeleton and the pore fluids. For orthotropic solid
skeleton, the non-zero components of those can be written as [18]

A11 ¼ C11 þ a21M; A12 ¼ C12 þ a1a2M; A13 ¼ C13 þ a1a3M;

A22 ¼ C22 þ a22M; A23 ¼ C23 þ a2a3M; A33 ¼ C33 þ a23M;

A44 ¼ C44; A55 ¼ C55; A66 ¼ C66;

M1 ¼ � Ma1; M2 ¼ �Ma2; M3 ¼ �Ma3;
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M ¼
1� f

Ks

þ
f

Kf

�
C11 þ C22 þ C33 þ 2C12 þ 2C13 þ 2C23

9K2
s

 !�1

;

a1 ¼ 1�
C11 þ C12 þ C13

3Ks

; a2 ¼ 1�
C12 þ C22 þ C23

3Ks

; a3 ¼ 1�
C13 þ C23 þ C33

3Ks

ð2Þ

where Cij are the elastic parameters for the solid skeleton, Ks the modulus of the solid grains, and
Kf the modulus of the pore fluid. mij and rij are mass and damping symmetric matrixes. In order to
compare with the results obtained in terms of the Umov–Poynting vector and energy densities,
here mij and rij are expressed as the functions of angular frequency o with the form

mijðoÞ ¼ Re½TijðoÞ�rf =f;

rijðoÞ ¼ Z=Re ½KijðoÞ�; ð3aÞ

where Z is the viscosity of the fluid, and KijðoÞ and TijðoÞ are, respectively, dynamic permeability
and tortuosity symmetric tensors with relation [7]

TijðoÞ ¼ iZf=½KijðoÞorf � (3b)

in which i denotes the imaginary unit. In this paper, without special declaration, i; j ¼ 1; 2; 3
correspond to x, y, z, respectively.
2.2. Dynamic permeability and tortuosity

For porous solids with pores of simple form (for example, cylinder tubes), the dynamic
permeability and dynamic tortuosity can be expressed in closed form [6,7]. For orthotropic fluid-
saturated porous media, by assuming that the main symmetric axis of orthotropic solid skeleton
and the complex permeability tensor are both along the vertical direction, the dynamic
permeability tensor is expressed as

½KijðoÞ� ¼

k1ðoÞ 0 0

0 k2ðoÞ 0

0 0 k3ðoÞ

2
64

3
75; (4)

where k1ðoÞ; k2ðoÞ and k3ðoÞ are dynamic permeabilities along the orthotropic main axes (i.e.,
axes x, y and z). Extending the formula given by Ref. [7] to the orthotropic situation, we obtain

kjðoÞ ¼ kj0 1�
4iT2

j1k2
j0orf

ZL2
j f

2

 !0:5

�
iTj1kj0orf

Zf

2
4

3
5
�1

; (5)

where Lj is the characteristic length of pores in the j direction, Tj1 the dynamic tortuosity when o
tends to infinity, kj0 the dynamic permeability when o equals zero. The dynamic tortuosity Tj may
be obtained by Eq. (3b). Tj1; kj0 and Lj are unrelated and independently measured [7]. Eq. (5)
merely relies on four constants Tj1; kj0; Lj and f, which are easy to be determined, and are
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applicable in the whole real frequency domain. In the following calculation, we have [7]

8Tj1kj0

fL2
j

¼ 1: (6)

3. Characteristic form

Let the characteristic surface in the ðx; tÞ space be given by

c ¼ t � tðxÞ ¼ 0; (7)

where t is a function of x only, x ¼ x; y; z
	 


: Also, let ~f be the value of function f ðx; tÞ evaluated
on the characteristic surface t ¼ tðxÞ; i.e.,

~f ðx; tÞ ¼ f ðx; tðxÞÞ: (8)

We then have

~f ;i ¼ f ;i þ f ;tt;i; (9)

where f,i and f,t on the right-hand side of Eq. (9) are the values of the partial differentiations of
function f with respect to the spacial variables and time, respectively, evaluated on the
characteristic surface. By applying Eq. (9) to sij and p in Eq. (1), we obtain

~sij;j � sij; tt; j ¼ r1v
s
i;t þ r2 v

f
i;t

� ~p;i þ p;tt;i ¼ rf vs
i;t þ fmikðv

f
k;t � vs

k;tÞ þ frikðv
f
k � vs

kÞ; ð10aÞ

sij;t ¼ Aijklð~v
s
k;l � vs

k;tt;lÞ þ fMijð~v
s
k;k � vs

k;tt;k � ~vf
k;k þ v

f
k;tt;kÞ;

p;t ¼ Mklð~v
s
k;l � vs

k;tt;lÞ þ fMð~vs
k;k � vs

k;tt;k � ~vf
k;k þ v

f
k;tt;kÞ; ð10bÞ

After eliminating sij;t and p;t; we have

D	
ik M	

ik

M̄
	

ik � Mo
ik Mo

ik

� � vs
k;t

v
f
k;t

( )
¼

A1
i

A2
i

( )
; (11)

where

D	
ik ¼ Aijklt;j t;l þ fMijt;jt;k � r1dik; (12a)

M	
ik ¼ �fMijt;j t;k � r2dik; (12b)

M̄
	

ik ¼ �Mklt;it;l � rf dik; (12c)

Mo
ik ¼ fMt;it;k � fmik; (12d)

A1
i ¼ Aijkl ~v

s
k;lt;j þ fMij ~v

s
k;kt;j � fMij ~v

f
k;kt;j � ~sij;j; (12e)

A2
i ¼ �Mkl ~v

s
k;lt;i þ fM ~vf

k;k t;i � fM ~vs
k;kt;i þ ~p;i þ frikðv

f
k � vs

kÞ: (12f)
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The characteristic surface tðxÞ is a solution of the differential equations which is obtained by
setting the determinant of the matrix as zero, that is,

jQikj ¼
D	

ik M	
ik

M̄
	

ik � Mo
ik Mo

ik

����
���� ¼ 0: (13)

At a fixed time t, let n be the unit vector normal to the characteristic surface in the x-space
pointing toward the direction of propagation of the characteristic surface and c be the normal
wave speed. Then

t;i ¼ ni=c: (14)

Substituting Eq. (14) into Eq. (12) and then into Eq. (13) yields the characteristic equations for
wave speeds c along a given vector n.
Since the characteristic curves of Eq. (13) are the bicharacteristics of Eq. (1), we obtain [17]

bp ¼
dxp

dt
¼

ðqQ=@t;pÞ
t;kðqQ=@t;kÞ

ðp ¼ 1; 2; 3Þ; (15)

where bp is the wave velocity measured along the bicharacteristic direction.
For every value of bp, we can find the corresponding left eigenvectors l ¼ fl1; l2g of Q; that is

l1Dþ l2ðM	 �MoÞ ¼ 0; (16a)

l1M	 þ l2Mo ¼ 0 (16b)

in which l1 ¼ fl11; l
1
2; l

1
3g; l

2 ¼ fl21; l
2
2; l

2
3g: When Eq. (11) is multiplied by l, it is found from Eqs. (16)

that

l1A1
þ l2A2

¼ 0: (17)

Because ~sij ; ~v
z
k and ~p are the values of sij ; vzk and p evaluated on the characteristic surface, Eq. (17)

is just the ‘interior differential equation’ on the characteristic surface.
The total differentiation of a function f ðx; tÞ along the bicharacteristics is defined by

df

dt
¼ f ;j

dxj

dt
þ f ;t ¼ f ;j b;j þ f ;t: (18)

Eliminating f ;t from Eqs. (9) and (18) yields

~f ;i ¼
df

dt
t;i þ ðdij � t;ib;jÞ f ;j: (19)

Therefore, using Eqs. (19), (14) and (16), Eq. (17) can be rewritten as

l1i
dsij

dt
nj � r1c

dvs
i

dt
� r2c

dv
f
i

dt

 !

� l2i
dp

dt
ni þ rf c

dvs
i

dt
� fcmik

dvs
k

dt
þ fcmik

dv
f
k

dt

" #
¼ S along

dxi

dt
¼ bi; ð20aÞ
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where

S ¼ l1i Ailklnj þ fMiknj � r1cdikbj

� �h
�l2i Mkj ni þ fMdkjni � fmikbj þ rf cdikbj

� �i
vs

k;j

þ l1i ð�fMik nj � r2cdikbjÞ þ l2i ðfMdjkni � f mikbjÞ
� �

v
f
k;j

� l1i ðcdjk � njbkÞsij;k þ l2i ðcdik � nibkÞp;k þ l2i fcrikðv
f
k � vs

kÞ: ð20bÞ

The interior differentiation on the characteristic surface in the space ðx; tÞ is now divided into two
parts. The left-hand side of Eq. (20a) contains differentiations along the bicharacteristics, while
the right-hand side contains differentiations on the part of characteristic surface, which intersects
the plane t=const. Eqs. (20) are the desired compatibility relations along bicharacteristics, which
provides a basis for a finite-difference approximation.
The above analysis results can be easily applied to zero-porosity porous media. The constitutive

equations for anisotropic solids can be obtained from Eqs. (1) by setting f=0, rf=0, Aijkl=Cijkl,
r1=rs, mij=rij=0, and Mij=M=0. The differential equations for anisotropic solids are obtained
through direct degeneration of Eq. (11)

D0n

ikvs
k;t ¼ A

0

i; (21)

where

D0n

ik ¼ Cijklt;jt;l � rsdik: (22a)

A0
i ¼ Cijkl ~v

s
k;lt;j � ~sij;j (22b)

Thus, the differentiation equation of the characteristic surface for anisotropic solids is determined
by

D0n

ik

�� �� ¼ Cijklt;jt;l � rsdik

�� �� ¼ 0: (23)

Accordingly, the compatibility relations along bicharacteristics are

li

dsij

dt
nj � rsc

dvs
i

dt

� �
¼ S0 along

dxi

dt
¼ bi; (24a)

where

S0 ¼ liðCijklnj � rscdikblÞ vs
k;l � liðcdkj � njbkÞsij;k (24b)

and li represents the corresponding left vector of characteristic matrix D0	: Hence, the
characteristic equations and compatibility relations for anisotropic solids, obtained through the
degeneration of the equations for anisotropic fluid-saturated porous media, coincide with the
formula given in Ref. [15]. This indicates that the characteristic equations for pure solids form a
particular case of fluid-saturated porous media and can be degenerated directly from the
corresponding characteristic equations for fluid-saturated porous media.
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4. Wave fronts and velocity surfaces

4.1. Wave fronts

Assume a disturbance is applied at the origin O at t=0. If t is the arrival time, the first plane
wave nðxÞ to arrive at the point r must satisfy [19]

rdnðxÞ ¼ vðxÞ t: (25)

Following Ref. [19], for a given time (say t=1) the wave surface is defined as the locus of point r;
which satisfies

rds ¼ 1; (26)

where vector s is the slowness vector defined by

s ¼
nðxÞ

vðxÞ
(27)

and the surface 1=vðxÞ is the slowness surface. Eqs. (26) and (27) show that instead of finding nðxÞ

for a given r; we could determine r for a given n such that Eq. (26) is satisfied.
From Eq. (14), it is easy to know that the projections of the coordinates of points on slowness

surface to the axis xi are

si ¼
1

c
ni ¼ t;i; (28)

where t,i is the solution of the characteristic Eq. (13). Eq. (13) can be expressed as

F ðt;iÞ ¼ 0: (29)

By treating Eq. (29) as the first-order differential equation of t, then the differential equations
along bicharacteristics are

dxi

ds
¼

qF

qt;i
; (30a)

dt
ds

¼ t;i
qF

qt;i
; (30b)

dt;i
ds

¼ � t;i
qF

qt
þ

qF

qxi

� �
; (30c)

where the direction of qF/qt,i is parallel to the direction of vector s. From Eq. (26) it is easy to see
that the direction of qF/qt,i is just the direction of vector r. Then, what should be determined by
now is the module of vector r. Along the bicharacteristics, t ¼ tð ~xÞ; and we have

dxi

dt
¼
dxi

dt
¼
dxi

ds
=
dt
ds

: (31)

Suppose that r is the module of vector r, and ri is the projection of r on the axes, then when t=1,
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we have

dxi

dt
¼ ri: (32)

Substituting Eqs. (30a) and (30b) into Eq. (32) leads to

ri ¼
@F

@t;i
=ðt;j

@F

@t;j
Þ: (33)

By now, we have obtained the expressions for the coordinates of the points on the wave fronts,
that is, the expressions for wave fronts.
4.2. Normal velocity surfaces

Here we deduce the expressions for the normal velocity surfaces of orthotropic fluid-saturated
porous media. By using Eq. (2), Eq. (11) is recast as

D	V;t ¼ A; (34)

where

V;t ¼ fvs
x;t; v

s
y;t; v

s
z;t; v

f
x;t; v

f
y;t; v

f
z;tg

T;

the elements for matrix D	and A are

dn

11 ¼ A11t2;x þ A66t2;y þ A55t2;z þ fM1t2;x � r1; dn

12 ¼ A12 t;xt;y þ A66t;xt;y þ fM1t;xt;y;

dn

13 ¼ A13t;xt;z þ A55t;xt;z þ fM1t;xt;z; dn

14 ¼ �fM1t2;x � r2;

dn

15 ¼ � fM1t;xt;y; dn

16 ¼ �fM1t;xt;z;

dn

21 ¼ A12t;xt;y þ A66t;xt;y þ fM2t;xt;y; dn

22 ¼ A66t2;x þ A22t2;y þ A44t2;z þ fM2t2;y � r1;

dn

23 ¼ A23t;yt;z þ A44t;yt;z þ fM2t;yt;z; dn

24 ¼ �fM2t;xt;y;

dn

25 ¼ � fM2t2;y � r2; dn

26 ¼ �fM2t;yt;z;

dn

31 ¼ A13t;xt;z þ A55t;xt;z þ fM3t;xt;z; dn

32 ¼ A23t;yt;z þ A44t;yt;z þ fM3t;yt;z;

dn

33 ¼ A55t2;x þ A44t2;y þ A33t2;z þ fM3t2;z � r1; dn

34 ¼ �fM3t;xt;z;

dn

35 ¼ � fM3t;yt;z; dn

36 ¼ �fM3t2;z � r2;

dn

41 ¼ fm1 � rf � M1t2;x � fMt2;x; dn

42 ¼ �M2t;xt;y � fMt;xt;y;

dn

43 ¼ � fMt;xt;z � M3t;xt;z; dn

44 ¼ �fm1 þ fMt2;x;

dn

45 ¼ fMt;xt;y; dn

46 ¼ fMt;xt;z;

dn

51 ¼ � M1t;xt;y � fMt;xt;y; dn

52 ¼ fm2 � rf � M2t2;y � fMt2;y;
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dn

53 ¼ � fMt;yt;z � M3t;yt;z; dn

54 ¼ fMt;xt;y;

dn

55 ¼ � fm2 þ fMt2;y; dn

56 ¼ fMt;yt;z;

dn

61 ¼ � M1t;xt;z � fMt;xt;z; dn

62 ¼ �M2t;yt;z � fMt;yt;z;

dn

63 ¼ fm3 � rf � M3t2;z � fMt2;z; dn

64 ¼ fMt;xt;z;

dn

65 ¼ fMt;yt;z; dn

66 ¼ �fm3 þ fMt2;z; ð35aÞ

A1 ¼ � ~sxx;x � ~sxy;y � ~sxz;z þ A66t;yð~vs
x;y þ ~vs

y;xÞ þ A55t;zð~vs
x;z þ ~vs

z;xÞ

þ t;xðA11 ~v
s
x;x þ A12 ~v

s
y;y þ A13 ~v

s
z;zÞ

� fM1t;xð~vf
x;x þ ~vf

y;y þ ~vf
z;z � ~vs

x;x � ~vs
y;y � ~vs

z;zÞ;

A2 ¼ � ~sx;y;x � ~syy;y � ~syz;z þ A66t;xð~vs
x;y þ ~vs

y;xÞ

þ A44t;zð~vs
y;z þ ~vs

z;yÞ þ t;yðA12 ~v
s
x;x þ A22 ~v

s
y;y þ A23 ~v

s
z;zÞ

� fM2t;yð~vf
x;x þ ~vf

y;y þ ~vf
z;z � ~vs

x;x � ~vs
y;y � ~vs

z;zÞ;

A3 ¼ � ~sxz;x � ~syz;y � ~szz;z þ A55t;xð~vs
x;z þ ~vs

z;xÞ

þ A44t;yð~vs
y;z þ ~vs

z;yÞ þ t;zðA13 ~v
s
x;x þ A23 ~v

s
y;y þ A33 ~v

s
z;zÞ

� fM3t;zð~vf
x;x þ ~vf

y;y þ ~vf
z;z � ~vs

x;x � ~vs
y;y � ~vs

z;zÞ;

A4 ¼ ~p;x þ fMt;xð~vf
x;x þ ~vf

y;y þ ~vf
z;zÞ

� fMt;xð~vs
x;x þ ~vs

y;y þ ~vs
z;zÞ

� t;xðM1 ~v
s
x;x þ M2 ~v

s
y;y þ M3 ~v

s
z;zÞ þ fr1ðv

f
z � vs

zÞ;

A5 ¼ ~p;y þ fMt;yð~vf
x;x þ ~vf

y;y þ ~vf
z;zÞ

� fMt;yð~vs
x;x þ ~vs

y;y þ ~vs
z;zÞ

� t;yðM1 ~v
s
x;x þ M2 ~v

s
y;y þ M3 ~v

s
z;zÞ þ fr2ðv

f
y � vs

yÞ;

A6 ¼ ~p;z þ fMt;zð~vf
x;x þ ~vf

y;y þ ~vf
z;zÞ

� fMt;zð~vs
x;x þ ~vs

y;y þ ~vs
z;zÞ

� t;zðM1 ~v
s
x;x þ M2 ~v

s
y;y þ M3 ~v

s
z;zÞ þ fr3ðv

f
z � vs

zÞ: ð35bÞ

Thus, the differential equation of the characteristic surface is determined by

Det D	 ¼ 0: (36)

Let n ¼ ðcos a; cos b; cos gÞ be the unit vector normal to the characteristic surface, in which a; b
and g are the angles between the vector n and axis x axis y and axis z, respectively. Then we have

t;x ¼
cos a

c
t;y ¼

cos b
c

t;z ¼
cos g

c
: (37)

Substituting Eqs. (37) into Eq. (36), we obtained the characteristic equations for the normal
velocity surface, that is

jDvj ¼ 0: (38)
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The elements of Dv have the same forms as the elements given in Eqs. (35a), except that t;i is
replaced by the relations listed in Eqs. (37). Expanding Eq. (38) leads to

a1c
8 þ a2c

6 þ a3c
4 þ a4c

2 þ a5 ¼ 0: (39)

The explicit forms of the coefficients am (m=1,y,5) are very miscellaneous, so they are not given
here. Eq. (39) is quartic of c2which can be solved directly. Thus, for a given vector n, four positive
velocities—the velocity for quasi-fast wave, marked as ‘qL1’, quasi-slow wave, marked as ‘qL2’,
and quasi-transverse waves, marked as ‘qS1’ and ‘qS2’, are obtained.
4.3. Special cases

The above expressions for wave fronts and velocity surfaces can be easily applied to the cases of
transversely isotropic fluid-saturated porous media, isotropic fluid-saturated porous media,
orthotropic solids (also refer to Section 3), transversely isotropic solids and isotropic solids. For
example, in the case of isotropic fluid-saturated porous media, by setting C11=C22=C33,
C12=C13=C23, C44=C55=C66 and 2C44=C11=C12, and without loss of generality let n=(1,0,0);
Eq. (39) is degenerated to

½ðrm1 � r2f Þc
2 � A66m1� ½ðrm1 � r2f Þc

4 � ðrM þ A11m1 þ 2M1rf Þc
2

þ A11M � M2
1� ¼ 0: ð40Þ

The velocities for the waves are

c2s ¼
A44m1

rm1 � r2f
; (41a)

c2L1 ¼
Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 4ðrm1 � r2f ÞðA11M � M2

1Þ

q
2ðrm1 � r2f Þ

; (41b)

c2L2 ¼
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 4ðrm1 � r2f ÞðA11M � M2

1Þ

q
2ðrm1 � r2f Þ

; (41c)

where D ¼ rM þ A11m1 þ 2M1rf :
For isotropic solids, the expressions of wave velocity can be obtained from Eq. (39) after the

same degeneration as Eq. (21), that is,

c2s ¼
C44

r
; (42a)

c2L ¼
C11

r
: (42b)

They are the familiar formulae for velocities of the transverse wave and longitudinal wave in
isotropic solids.
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5. Numerical results and discussion

The shape of normal velocity surfaces (or slowness surfaces, which are the inverse of velocity
surfaces) and wave fronts is important in the interpretation of wave phenomena and nowadays it
forms the basic concept underlying the treatment of diverse problems such as the propagation of
surface waves, elastodynamic Green’s functions and phonon focusing in ballistic phonon
transport [20]. In order to generalize the features of stress wave propagation in fluid-saturated
porous media, several numerical examples are computed so as to obtain normal velocity surfaces
and wave fronts for an orthotropic fluid-saturated porous medium and its special cases according
to the equations derived above. The parameters for the orthotropic fluid-saturated porous
medium are given in Table 1. In all calculations, the frequency takes the value of 3135Hz, which is
the same as that in Ref. [16].
Figs. 1 and 2 show the three-dimensional normal velocity surfaces and wave fronts for stress

wave propagation in the orthotropic fluid-saturated porous medium. Due to the symmetry, only
parts of the first quadrant are given. From Figs. 1 and 2, it can be seen that there are four kinds of
waves: quasi-fast wave, marked as ‘qL1’; quasi-slow wave, marked as ‘qL2’; and quasi-transverse
waves, marked as ‘qS1’ and ‘qS2’, respectively. The wave qL2 is a particular wave for fluid-
saturated porous media which mainly accounts for the effect of the fluid. In Fig. 1, Vx, Vy and Vz

mean the projections of the speed c, obtained through Eq. (38), on the axis x, y and z, respectively.
As shown in Figs. 1 and 2, the velocity surfaces and wave fronts are complex three-dimensional
surfaces. In order to demonstrate this irregularity in a conventional way, the projections of the
velocity surfaces and wave fronts on the plane xOy, xOz, and yOz are also plotted in Figs. 3–5.
Shown as Figs. 1 and 2, due to anisotropy of the media, the velocity surfaces and the wave

fronts change with the propagation direction of the stress waves. The velocity surfaces for qL1
and qL2 are relatively regular and convex, as shown in Figs. 1a and b. But the velocity surfaces for
qS1 and qS2 are very anisotropic and display concave and saddle-shaped regions in addition to
convex regions, which are given in Figs. 1c and d. As a result, the wave fronts for qL1 and qL2 are
anisotropic simple surfaces, and the wave fronts for qS1 and qS2 exhibit complex characteristic
and there are more than one cuspidal triple angle on them. The three-dimensional variation of the
wave fronts for qS1 and qS2 are given in Figs. 2c and d. By referring to Figs. 3b, 4b and 5b, the
projections of the wave fronts on the plane xOy, xOz, and yOz, it can be seen clearly that there are
three triple angles on the wave front of qS1 and one on the wave front of qS2. The positions and
sizes of the triple angles show directional dependence. For example, there are two triple angles in
the plane xOz, but only one in the plane yOz for qS1. This variation of the numbers, position and
Table 1

Parameters for orthotropic fluid-saturated porous media (porosity f=0.2)

C11=39.4GPa C33=13.1GPa k20=400mD Ks=40GPa

C12=1.0GPa C44=3.0GPa k30=100mD Kf=2.5GPa

C13=5.38GPa C55=16.0GPa T1=2mD rf=1040kg/m2

C22=38.0GPa C66=18.0GPa T2=3.0mD rs=1815 kg/m2

C23=4.0GPa k10=600mD T3=3.6mD Z=0.001Pa s
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Fig. 1. (a) Velocity surface of qL1 in the first quadrant for orthotrophic fluid-saturated porous media. (b) Velocity

surface of qL2 in the first quadrant for orthotropic fluid-saturated porous media. (c) Velocity surface of qS1 in the first

quadrant for orthotrophic fluid-saturated porous media. (d) Velocity surface of qS2 in the first quadrant for orthotropic

fluid-saturated porous media.
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sizes of triple angles from plane xOz to yOz is shown clearly in Fig. 2c. Those further reflect
the complicated influence of anisotropy of media on the propagation characteristic of stress
waves.
Subsequently, we let C11=C22=39.4GPa, C13=C23=5.38GPa, C44=C55=3GPa,

C66=(C11�C12)/2=19.2GPa, k1=k2=600mD, T1=T2mD (referring to Table 1), and discuss
the wave propagation in the transversely isotropic fluid-saturated porous medium. The calculating
parameters are the same with those given in Ref. [16].
Figs. 6 and 7 describe the velocity surfaces and wave fronts in iso–plane xOy and aniso–plane

xOz for the transversely isotropic fluid-saturated porous medium, respectively. Comparison
between Fig. 6 and Fig. 3 shows that in iso-plane of the transversely isotropic fluid-saturated
porous medium, the velocity surfaces and wave fronts are circles and coincide with each other.
However, in aniso-plane xOz, as shown in Fig. 7, velocity surfaces and wave fronts show
direction dependence. But the numbers of triple angles on the wave fronts for the transversely
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Fig. 2. (a) Wave fronts of qL1 in the first quadrant for orthotropic fluid-saturated porous media. (b) Wave fronts of

qL2 in the first quadrant for orthotropic fluid-saturated porous media. (c) Wave fronts of qS1 in the first quadrant for

orthotropic fluid-saturated porous media. (d) Wave fronts of qS2 in the first quadrant for orthotropic fluid-saturated

porous media.
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isotropic fluid-saturated porous medium are less than those for orthotropic medium and the
shapes seem simpler, compared with Fig. 4. This is owing to the less severe anisotropy of the
medium. Comparing Figs. 6a and b with Figs. 3a and b given in Ref. [16], it is seen that the results
are the same.
Lastly, we discuss the propagation characteristic of stress waves in isotropic fluid-saturated

porous media. In calculation, we set C11=C22=C33=39.4GPa, C12=C13=C23=5.8GPa,
C44=C55=C66=(C11�C12)/2=16.8GPa, k1=k2=k3 600mD, T1=T2=T3=2mD, while the
other parameters are the same as those listed in Table 1. The results shown that there are two
kinds of longitudinal waves: fast wave, marked as ‘L1’, and slow wave, marked as ‘L2’; and one
kind of transverse wave, marked as ‘S’. In any plane, the velocity curves and wave fronts are all
circles and coincide with each other. It is similar to the situation of wave propagation in isotropic
pure solids [15].
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Fig. 3. (a) Velocity surface in the plane xOy for orthotropic fluid-saturated porous media. (b) Velocity surface in the

plane xOy for orthotropic fluid-saturated porous media.

Fig. 4. (a) Velocity surface in the plane xOz for orthotropic fluid-saturated porous media. (b) Wave fronts in the plane

xOz for orthotropic fluid-saturated porous media.
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6. Conclusions

Summarizing the results above, we assert that the discussion about the velocity surfaces and
wave fronts in the orthotropic fluid-saturated porous media and its special cases is helpful to
disclose some basic characteristic and phenomena of waves in anisotropic fluid-saturated porous
media. In isotropic fluid-saturated porous media or the iso-plane of transversely isotropic
porous media, the velocity surfaces and wave fronts are circles and coincide with each other.
In orthotropic fluid-saturated porous media or in the aniso-plane of transversely isotropic
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Fig. 5. (a) Velocity surface in the plane yOz for orthotropic fluid-saturated porous mediia. (b) Wave fronts in the plane

yOz for orthotropic fluid-saturated porous media.

Fig. 6. (a) Velocity surface in the iso-plane xOy for orthotropic fluid-saturated porous mediia. (b) Wave fronts in

theiso- plane xOz for orthotropic fluid-saturated porous media.
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fluid-saturated porous media, along with the increase of anisotropy of the media, the velocity
surfaces and wave fronts gradually change from circles to irregular shapes, and more than one
triple angle may appear on the wave fronts when anisotropy is great. The slow wave has almost
the same properties as the fast wave. They are both less sensitive to anisotropy of the media. The
characteristic analysis results obtained in this paper also show that the generalized characteristic
theory is an effective and accurate means for investigating the features of stress wave propagation
in anisotropic fluid-saturated porous media.
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Fig. 7. (a) Velocity surface in the aniso-plane xOz for transversely istropic fluid-saturated porous media. (b) Wave

fronts in the aniso-plane xOz for transversely isotropic fluid-saturated porous media.
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